Placement Test - Level III

Directions: Complete all problems to the best of your ability. Show all of your work. You may use a non-graphing calculator to do basic calculations, but not to factor or graph. There is no time limit. Each problem is worth 1 point. When you are done, please grade your test using the "Placement Test - Level III - Answer Key".

1. Solve. $\quad 8[-12+4(3 x-7)]=9[5(x-2)-6(3 x-1)]$
2. Find three consecutive odd integers whose sum is -243 .
3. Solve the formula $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$ for b_{2}.
4. Harry is making 15 pounds of nut mixture with cashews and almonds. The cashews cost $\$ 6$ per pound and the almonds cost $\$ 4.50$ per pound. How many pounds of each should Harry use for the mixture to cost $\$ 5.40$ per pound?
5. Solve, graph the solution on a number line, and write the solution in interval notation.

$$
-\frac{8}{5} x \leq \frac{3}{7}
$$

6. Solve, graph the solution on a number line, and write the solution in interval notation.

$$
5 x-3>6 \text { or } 4 x-1 \leq 3
$$

7. Solve. $\quad|4 x-3|+7=12$

8. Identify the slope and y-intercept of the line. $7 x+3 y=9$
9. Find the equation of the line passing through the given points. The slope formula is: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$. The point-slope equation is: $y-y_{1}=m\left(x-x_{1}\right)$.

$$
(-3,-1) \text { and }(4,7)
$$

11. Determine whether the ordered pair is a solution to the inequality:

$$
y>x-4 ;(-5,-6)
$$

12. Determine the domain and range of the given relation.

$$
\{(2,5),(4,9),(5,12),(7,13),(8,20)\}
$$

13. Graph the function. $f(x)=\sqrt{x-3}$

$$
\begin{aligned}
& 5 x+3 y=11 \\
& -3 x+y=-1
\end{aligned}
$$

15. The difference of two complementary angles is 28 degrees. Find the measure of the angles.
16. Sophia is preparing 15 liters of a 20% saline solution. She has only 35% and 15% solutions in her lab. How many liters of the 35% and 15% solutions must be mixed to make the 20% solution?
17. Solve the system by graphing. $y \geq-2 x+5$

$$
y<x-1
$$

18. A boy drops a ball off a 100 -foot cliff into the ocean. The polynomial $h(t)=-16 t^{2}+100$ gives the height of the ball, in feet, t seconds after it is was dropped. Find the height after $t=2$ seconds.
19. Simplify. $\quad\left(\frac{3 x^{2} y^{-3}}{2 z^{4}}\right)^{2}$
20. Multiply. $\quad\left(2 x^{2}-7\right)\left(9 x^{2}+3 x-1\right)$
$\left(y^{3}-343\right) \div(y-7)$
22. Factor. $x y-5 y-x^{2}+5 x$
23. Factor. $18 x^{2}-37 x y+15 y^{2}$
24. Factor. The difference of cubes formula is: $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$. $27 x^{3}-125 y^{3}$
25. Factor. $60 x^{2} y-75 x y+30 y$
26. Solve. $\quad 3 x^{2}+8 x=9+2 x$
27. Multiply. $\frac{5 x^{2}-180}{10 x^{2}-10} \cdot \frac{20 x+20}{2 x-12}$
28. Add. $\frac{6}{y^{2}+12 y+35}+\frac{3 y}{y^{2}+y-42}$
29. Simplify. $\frac{\frac{3}{x}+\frac{1}{2 x}}{\frac{1}{3 x}-\frac{3}{4 x}}$
30. Solve. $\frac{4}{x-3}+\frac{2 x}{x^{2}-9}=\frac{1}{x+3}$
31. Bobby can weed the garden in 6 hours, while his wife can do it in 4 hours. How long would it take them if they worked together?
32. Solve and write the solution in interval notation. $\frac{3 x-4}{2 x+1}<0$
33. Simplify. $\quad-\sqrt{392 x^{5} y^{6}}$

$$
\sqrt[3]{\frac{16 x^{5} y^{4}}{250 x y}}
$$

35. Simplify. $81^{\frac{1}{4}}$
36. Multiply and simplify.

$$
(2 \sqrt{5}-3)(\sqrt{5}+4)
$$

37. Rationalize the denominator. $\frac{4}{\sqrt[3]{9 x^{2}}}$

$$
\sqrt{x+4}+2=x
$$

39. Find the domain of the function and write the domain in interval notation.

$$
f(x)=\sqrt{5 x-7}
$$

40. Multiply and simplify.

$$
(4-9 i)(3+7 i)
$$

41. Solve by completing the square. $\quad z^{2}+4 z=-12$
42. Solve using the Quadratic Formula. The Quadratic Formula is: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

$$
x^{2}-2 x=198
$$

43. Solve.

$$
2 x^{4}-11 x^{2}+12=0
$$

44. The base of a triangular sail is 4 feet less than the height. The area is 96 square feet. Find the base and height of the sail. The area of a triangle is: $A=\frac{1}{2} b h$.
45. Find the maximum or minimum value of the function. $f(x)=-x^{2}-8 x-10$
46. Graph the quadratic using transformations.

$$
f(x)=3(x-4)^{2}+1
$$

47. Solve the inequality and write the solution in interval notation.

$$
x^{2}+8 x \geq-15
$$

48. For the functions $f(x)=3 x^{2}+4$ and $g(x)=7 x-2$, find $(f \circ g)(x)$.
49. Solve. $\quad 3^{2 x-1}=81$

50. Find the exact value of the logarithm without using a calculator.

$$
\log _{\frac{1}{5}} 25
$$

51. Use the properties of logarithms to condense the logarithm. Simplify if possible. $2 \log _{3} 7+\log _{3}(x-1)$
52. Solve.

$$
e^{x}=9
$$

53. Identify the center and radius and then graph the circle.

$$
(x-2)^{2}+(x+1)^{2}=9
$$

54. Graph. $x^{2}+4 y^{2}=16$

55. Graph. $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$

56. Write the first five terms of the sequence whose general term is given.

$$
a_{n}=3 n-5
$$

57. Write the first five terms of the arithmetic sequence with the given first term and common difference.
$a_{1}=10$ and $d=4$
58. Determine if the sequence is arithmetic, geometric, or neither.
$144,72,36,18,9, \ldots \ldots$
59. Evaluate. 5!
60. Evaluate. $\quad\binom{9}{2}$
© 2021 The Math Translator
